
.

7,
1

i,

Analysis, design and iterative decoding of

double serially concatenated codes with

interleavers

S. Benedetto, D. Divsalar, G. Montorsi, F. Pollara

S. Benedetto and G. Montorsi are with Dipartimento di Elettronica, Politecnico di Torino, C.so Duca degli

Abruzzin.24,10129 Torino, Italy
D. Divsalar and F. PoNara are with Jet Propulsion Laboratory, Cahfornia Institute of T~hnology, Pasadena.

California, USA



2 JSAC SPECIAL ISSUE ON TURBO CODES

Abstract

A double serially concatenated code with two interleaves consists of the cascade of an outer

encoder, an interleaver permuting the outer codeword bits, a middle encoder, another interleaver

permuting the middle codeword bits and an inner encoder whose input words are the permuted

middle codewords. The construction can be generalized to h cascaded encoders separated by

h – 1 interleavers, where h >3. We obtain upper bounds to the average maximum-likelihood

bit error probability of double serially concatenated block and convolutional coding schemes.

Then, we derive design guidelines for the outer, middle, and inner codes that maximize the

interleaver gain and the asymptotic slope of the error probability curves. Finally, we propose

a low-complexity iterative decoding algorithm. Comparisons with parallel concatenated convo-

lutional codes, known as “turbo codes”, and with the recently prop-d serially concatenated

convolutional codes are also presented, showing that in some cases the new schemes offer better

performance.

I. ACRONYMS

APP A-Posteriori Probability.

BCJR Bahl, Cocke, Jelinek, Raviv.

CC Constituent Code.

CWEF Conditional Weight Enumerating Function.

DPCCC Double Parallel Concatenated Convolutional Code.

DSCC Double Serially Concatenated Code.

DSCBC Double Serially Concatenated Block Code.

DSCCC Double Serially Concatenated Convolutional Code.

IOWEF Input Output Weight Enumerating Function.

LPDF Logarithm of the Probability Density Function.

ML Maximum Likelihood.

MPCCC Multiple Parallel Concatenated Convolutional Code.

SCC Serially Concatenated Code. ‘

SCBC Serially Concatenated Block Code.

SCCC Serially Concatenated Convolutional Code.

PCC Parallel Concatenated Code.

PCCC Parallel Concatenated Convolutional Code.

II. INTRODUCTION

In his goal to find a class of codes whose probability of error decreased exponentially at rates less

than capacity, while decoding complexity increased only algebraically, Dave Forney [1] arrived at

a solution consisting of the multilevel coding structure known as concatenated de. It consists
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of the cascade of an inner code and an outer code, which, in Forney ’s approach, would be a

relatively short inner code (typically, a convolutional code) admitting simple maximum-likelihood

decoding, and a long high-rate algebraic nonbinary Reed-Solomon outer code equipped with a

powerful algebraic error-correction algorithm, possibly using reliability information from the

inner decoder.

Initially motivated only by theoretical research interests, concatenated codes have since then

evolved as a standard for those applications where very high coding gains are needed, such as

(deep- )space applications and many others. Alternative solutions for concatenation have also

been studied, such as using a trellis-coded modulation scheme as inner code [2], or concatenating

two convolutional codes [3]. In the latter case, the inner Viterbi decoder employs a soft-output

decoding algorithm to provide soft-input decisions to the outer Viterbi decoder. An interleaver

was also proposed between the two encoders to separate bursts of errors produced by the inner

decoder.

We find then, in a ‘classical” concatenated coding scheme, the main ingredients that formed

the basis for the invention of “turbo codes” [4], namely two, or more, constituent codes (CCS) and

an interleaver. The novelty of turbo codes, however, consists of the way they use the interleaver,

which is embedded into the code structure to form an overa.h concatenated code with very large

block length, and in the proposal of a parallel concatenation to achieve a higher rate for given

rates of CCS. The latter advantage is obtained using systematic CCS and not transmitting the

information bits entering the second encoder. The idea of parallel concatenation of two codes

was extended to multiple (> 2) codes, MPCCC, in [5] and [6]. The codes obtained in [6] have

been shown to yield very high coding gains at low bit error probabilities; in particular, low

bit error probabilities can be obtained at rates well beyond the channel cutoff rate, which had

been regarded for long time as the “practical” capacity. As an example, a rate 1/4 MPCCC

using three 8-state convolutional CCS, an interleaver with length 4096, and 20 iterations of the

decoding @gorithm yields a bit error probability of 10-5 at J??b/~oof 0.2 dB. Quite remarkably,

this performance can be achieved by a relatively simple iterative decoding technique whose

computational complexity is comparable to that needed to decode the three CCS.

Recently, in [7], serially concatenated block and convolutional codes (SCBC and SCCC) with

interleaver have been proposed. Their average maximum-likelihood performance, evaluated

through an upper bound to the bit error probability, show an irdedeaver gain, i.e. the de-

crease of bit error probability with increasing interleaver length, significantly higher than for

turbo codes. In [7], techniques for designing the CCS, and an iterative decoding algorithm were

also illustrated.

In this paper, we extend the results of serial concatenation to the case of three interleaver

codes, a scheme denoted by double serially concatenated code ( DSCC), called double serially
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concatenated block code (DSCBC ) or double serially concatenated convolutional code ( DSCC’C)

according to the nature of CCS. For this class of codes, we obtain analytical upper bounds to the

performance of a maximum-likelihood (ML) decoder, propose design guidelines leading to the

optimal choice of CCS that maximize the interleave gain and the asymptotic code performance,

and present an iterative decoding algorithm that generalizes that presented in [7]. Comparisons

with turbo codes and serially concatenated codes of the same complexity and decoding delay are

also performed.

In Section III, we derive analytical upper bounds to the bit error probability of both DSCBCS

and DSCCCS, using the concept of “uniform interleaver” that decouples the output of the outer

encoder from the input of the middle encoder, and the output of the middle encoder from the

input of the inner encoder. In Section IV, we propose design rules for DSCCCS through an

asymptotic approximation oft he bit error probabilityy bound assuming long interleavers or large

signal-t~noise ratios. In Section V we compare double and simple serial concatenations of block

and convolutional codes in terms of maximum-likelihood analytical upper bounds. Section VI is

devoted to the presentation of an iterative decoding algorithm, derived from the one introduced

in [7] and to its application to some significant codes.

III. ANALYTICAL BOUNDS TO THE PERFORMANCE OF DOUBLE SERIALLY CONCATENATED

CODES

For simplicity of the presentation, we begin

codes (DSCBCS).

A. Double seriai[y concatenated block codes

The scheme of a double serially concatenated

considering double serially concatenated block

block code is shown in Fig. 1. It is composed of

three cascaded CCS, the outer (Nl, k) code CO with rate l?: = k/N1, the middle (N2, A’l) code

Cm with rate R? = N1/N2 and the inner (n, N2) code C’i with rate R: = N2/n, linked by two

interleavers of lengths iV1 and N2. The overall DSCBC is then an (n, k) code, and we will refer

to it as the (n, k, A’l, N2) code C’S, including also the interleaver lengths. In the following, we

will derive an upper bound to the ML performance of the overall code CS. We assume that the

CCS are linear, so that also the DSCBC is linear and the uniform error property applies, i.e. the

bit error probability can be evaluated assuming that the all-zero codeword has been transmitted.

As in [81, [9], [7], a crucial step in the analysis consists in replacing the actual interleaver

that performs a permutation of the N input bits with an abstract interleave called uniform

interleauer, defined as a probabilistic device that maps a given input word of weight f into all

distinct
()

y permutations of it with equal probability p =
()

~, .; (see Fig. 2), so that the

input and output weight is preserved. Use of the uniform interleaver permits the computation
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------- ------- ------- . ------ ------- ------- ------- ------- ------- ----
~ Outer code Middle code

Interleave
l&9 (Nl,k)

Interleave
length=Nl (N2,NI) length=N2I1 ,

8------- ------- ------- ------- -.----- . . . . . . . . . . . . . . ------- ------- ---- i

Fig. 1. Double serially concatenated (n, k, fV1,A’z)block code.

of the “average” performance of DSCBCS, intended as the expectation of the performance of

DSCBCS using the same CCS, taken over the ensemble of all interleavers of given lengths. A

theorem proved in [9] guarantees the meaningfulness of the average performance, in the sense

that there will always be, for each value of the signal-t~noise ratio, at least a set of two particular

interleavers yielding performance better than or equal to those of the two uniform

0101

p=M6

Uniform
➤

Interleave

0011
0101
1001
1010
1100
0110

interleavers.

Fig. 2. The action of a uniform interleaver of length 4 on sequences of weight 2

Let us define the Input-Output Weight Enwnemting Function (IOWEF) of the DSCBC CS as

(1)Ac~(W, H) = ~ A~JVwHh ,
w,h

where A~j is the number of codewords of the DSCBC with weight h associated to an input word

of weight w.

We also define the Conditional Weight Enumemting Function (CWEF) ACs( w, H) of the

DSCBC as the weight distribution of codewords of the DSCBC which have input word weight

w. It is related to the IOWEF by

(2)
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With the knowledge of the CWEF, an upper bound to the bit error probability of the maximum-

Iikelihood decoded DSCBC can be obtained in the form [9]

(3)

where RC = k/n is the rate of CS, and &/N. is the signal-to-noise ratio per bit.

The problem thus consists in the evaluation of the CWEF of the DSCBC from the knowledge of

the CWEFS of the outer, the middle, and the inner codes, which we call ACO(W, L1), ACM (fI, L2)

and AC* (f2, H). To do this, we exploit the properties of the uniform interleavers. The first

interleaver transforms a codeword of weight 11 at the output of the outer encoder into all its

distinct
()

~ permutations. Similarly, the second interleaver transforms a codeword of weight
. .

12at the output of the middle encoder into all its distinct
()

~ permutations. As a consequence,

each codeword of the outer code COof weight 11,through the action of the first uniform interleaver,

()
?enters the middle encoder generating codewords of the middle code Cm, and each codeword

of the middle code Cm of weight 12, through the action of the second uniform interleaver, enters

‘( )N2the inner encoder generating 12 codewords of the inner code C’i.

codewords of the DSCBC of weight h associated with an input word

f%= 5 E‘2”x‘:72x‘:’.11’0’2=07mr

Thus, the number A~h of

of weight w is given by

(4)

From (4) we derive the expressions of the IOWEF and CWEF of the DSCBC

‘1 ‘~ A~l, X A:~2 ‘ Aci(12, ~)ACS(W, H) = ,:.,?O

=-
K9 (lN ‘

N1 NZ AcO(~, /l) X A:~2 x Ac’(~2, ~)
Acs(~,H) = ~ ~

11=012=0
(~) (’:) ‘

(5)

(6)

where ACO(W, /1) is the conditional weight distribution of the input words that generate code-

words of the outer code of weight /1.

Example 1

Consider the (7, 2) DSCBC code obtained by concatenating a (3,2) parity check code to another (4,3)

parity check code, and, finally to a (7,4) systematic Hamming code through two interleaves of lengths

N1 =3and Nz= 4. The IOWEF AC”(W, Ll), ACM(L1, L2), and .4C$(L2,f-f) of the outer, the middle
and inner codes are

AC”(PV,Ll) = 1+ W’(’2L:)+ W“2(L;)

.FM(L,, L?) = 1 + LI(3L; ) + L;(3L:) + L;(G)
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AC’(L2, H)= 1 + L3(3H3+ w) + L;(3ff3+3H4) + L:(W +3H4) + L;H7 ,

so that

ACO(W, O) = 1

AcO(kV,l) = O

Ac0(W,2) = 2W+W2

Ac0(W,3) = O

Acm(L1, O) = 1

AC-( L1,l) = O

Acm(L1, 2) = 3L1 + 3L;

Acm(LI , 3) = O

Acm(LI,4) = L:

This implies A~~ = 1, A:; = 3, Af; = 3, A~2 = 1, and A~’j, = O for all other /1, fz, so that

AC’(O, H) = 1

AC*(l, H) = 3H3 + H4

AC’(2, H) = 3HS + 3H4

AC’(3, H) = H3 + 3H4

AC’(4, H) = H7 .

Through (6), we then obtain

AC’(W, H) = i i ‘cO(w’’’)~$~;;(’2’H)H)
1,=012=0 11 1*

= 1 + W(H3 + H4) + W2(0.5H3 + 0.5H4) .

0

Previous results (5) and (6) can be easily generalized to the case of two interleavers, the

first with length iVl, which is an integer q multiple of the length of the outer codewords, and the

second with length N2, which is the same integer q multiple of the length of the middle codewords.

Denoting by AC:(W, Z.l) the IOWEF of the new (Afl, qk) outer code, by AC~(L2, LI ) the IOWEF

of the new (iV2, Nl) middle code and finally by AC:(L2, H) the IOWEF of the new (qn, N2) inner

code, it is straightforward to obtain

AC~(W, L1) = [AC”(W, L,)]’
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AC%(L1,L~) = [N’’(L,, L,)]’
A~:(L2,H) = [+ ’’(L2, H)]? (7)

From the IC)WEFS (7), through (2) we obtain the CWEFS AC~(W,lt), tlf~,, and Ac~(~2, ~) of

the new CCS, and, finally, the IOWEF and CWEF of the new (qn, qk, Nt, N2) DSCBC C:

Ac@tH)=55‘:’1x‘:i’x‘C:(’2’H)$‘,=”l’=”7TTRT
(8)

(9)

Example 2

We consider a DSCBC composed by a (4,3) parity-check code as outer code, a (7,4) Hamming code as

middle code, and a (15,7) BCH code u inner code. These CCS are linked by interleaves of length N1 = 4q

and N2 = 79. Using equations (8) and (3), upper bounds to the bit error probability are obtained and
plotted in Fig. 3 for various values of the integer q. The curves show the interleave gain, defined as

the factor by which the bit error probability is decreased with the interleavers length. Contrary to the

case of parallel concatenated block codes [9], the curves do not exhibit the interleaver gain saturation,

i.e. a phenomenon in which the interleaver gain progressively decreases while increasing the interleaver

length, up to a point in which increasing the interleaver length does not yield any further gain (examples

of gain saturation have been reported in [9]. Rather, for sufficiently high signal-t-noise ratios, the bit

error probability seems to decrease regularly with g as q‘3. We will explain this behavior in Section V.

o

B. Double Serially concatenated convolutional codes

The structure of a double serially concatenated convolutional code (DSCCC) is shown in Fig. 4.

It refers to, the case of three convolutional CCS, the outer code C’owith rate l?: = k/pi, the middle

code Cm with rate R? = PIIP29 and the inner code code Ci with rate R: = pzln~ joined by ‘Wo

interleaves of length N1, iV2 bits, generating a DSCCC C’S with rate RC = k/n. Note that N1

must be an integer multiple of pl, and N2 must be an integer multiple of p2 1. In addition, the

middle code rate imposes the constraint N1/pl = N2/p2 = N, so that the input block length is

kN. We assume, as before, that the convolutional CCS are linear, so that the DSCCC is linear

as well, and the uniform error property applies.

I Ac;u~y, this constraint is not necessary. We can choose, in fact, inner, middle and outer codes of any rates

R: = k,/n,, R? = k~/n~ and R: = k./n., constraining the interleaver lengths to be an integermultiPle of

the minimum common multiple of no and km, and of the minimum common multiple of n~ and k, i.e. ~i =

KI . mcm(no, km), and Nz = Kz. mcm(n~, k,) such that NI/Nz = RT. This generalization, though, leads to more

complicated expressions and is not considered in the following.
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Fig. 3. Analytical bound to the ML bit error probability for the DSCBC of Example 2. The values of q

are consecutive powers of 2, i.e. q = 2’, 1= O,. . . . 10

The exact analysis of this scheme can be performed by appropriate modifications of that

described .in [9] for PCCCS. It requires the use of a hyper-trdlis having as hyper-states set of

states of outer, middle and inner codes. The hyper-states sij~ and sf~~ are joined b a hwr-

bmnch that consists of all pairs of paths with length N that join states Si, S( of the inner code ,

states sj, s~ of the middle code, states Sk, sn of the outer code, respectively. Each hyper-branch

is thus an equivalent DSCBC labeled with an IOWEF that can be evaluated as explained in

previous subsection. From the hyper-trellis, the upper bound to the bit error probability can

be obtained through the standard transfer function technique employed for convolutional codes

[10]. As proved in [9] for the case of two parallel concatenated convolutional codes, when the

length of the interleaver is significantly greater than the constraint length of the CCS, an accurate

approximation of the exact upper bound consists in retaining only the branch of the hyper-trellis

joining the hyper-states S@, SMO. In the following, we will always use this appro~imation”
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Rate 1/4 DSCCC
------- ------- ------- ------- ------- ------- ------- ------- ------- ---

+EsE!~:~~%~“:=’3!~~~=L=mili=
h------- --.----- -------- -------- -------- -------- -------- -------- -$

Fig. 4. Double serially concatenated (n, k, IVl, Nz) convolutional code.

IV. DESIGN OF DOUBLE SERIALLY CONCATENATED CODES

In previous section, we have presented an analytical bounding technique to find the ML per-

formance of DSCBC and DSCCC. For practical applications, DSCCCS are to be preferred to

DSCBCS. One reason is that trellis-based maximum a-posteriori algorithms like the BCJR al-

gorithm [11], [12] are less complex for convolutional than for block codes, since the trellis is

time-invariant for convolutional codes and time-varying for block codes, the second is that the

interleaver gain can be greater for convolutional CCS, provided they are suitably designed [9].

Hence, we ded mainly with the design of DSCCCS, extending our conclusions to DSCBCS wheti

appropriate e.

Consider the DSCCC depicted in Fig. 4. Its performance can be approximated by that of an

equivalent block code whose IOWEF labels the branch of the hyper-trellis joining the zero states

of outer and inner codes. Denoting by ACS (w, H ) the CWEF of this equivalent block code, we

can rewrite the upper bound (3) as2

(lo)

where w% is the minimum weight of an input sequence generating an error event of the outer

code, and hm is the minimum weight3 of the codewords of Cs. By error event of a convolutional

code, we mean a sequence diverging from the zero state at time zero and merging into the zero

state at some discrete time j > 0. For constituent block codes, an error event is simply a

codeword.

The coefficients A~~h of the equivalent block code can be obtained from (4), once t~le quantities

A:ll , %12
c,m and Alz,h of the CCS are known. To evaluate them, consider a rate R = p/n convo-

lutional code C with memory v, and its equivalent (N/R, N – pv) block code whose codewords

21n the following, a subscript “m“ witl denote “minimum”, and a subscript “M” will denote “maximum”. Note

that superscript m is atso used to denote the middle code.
3sjnce the jnput Sequence5 of the jnner code are “o~ unconstrained jjd binary ~equences, but, instead, codewords

of the outer code, h~ can be greater than the inner code free distance d).
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are all sequences of length N/R bits of the convolutional code starting from and ending at the

zero state. By definition, the codewords of the equivalent block

events of the convolutional codes. Let

A(1, Hjj) = ~ Al,~,jlfh
h

code are concatenations of error

(11)

be the weight enumerating function of sequences of the convolutional code that concatenate j

error events with total input weight I (see Fig. 5), where A/,tt,j is the number of sequences of

weight h, input weight 1, and number of concatenated error events j. For N much larger than

the memory of the convolutional code, the coefficient Afh of the equivalent block code can be

approximated by4

()‘M ‘~ Al,h,j‘:h “ ~
j=]

where nM, the largest number of error events concatenated in a

generated by a weight 1 input sequence, is a function of h and 1 that

we will see later.

1 2 3

(12)

codeword of weight h and

depends on the encoder, as

~--;’-
1 J

\
Information weight

Codeword

Fig. 5.

weight
I i=l i= 1

A code sequence with parameters 1,h, j.

Let us return now to the block code equivalent to the DSCCC. Using previous result (12) with

j = ni for the inner code, j = nm for the middle code, and the analogous one j = n“ for the

‘This ruxmmption permits neglecting the length of error events compared to N, and assuming that the number

()
‘/p . Theof ways j input sequences producing j error events can be arranged in a register of length N is ,

ratio N/p derives from the fact that the code has rate p/n, and thus N bits corresponds to iV/p input words or,

equivalently, trellis steps.
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outer codes, and noting that N2/p2 = Nl /pt = N, we obtain for the outer code

(13)

For middle and inner codes, similar expressions can be obtained. Then, substituting them into

(4), we obtain the coefficient A~h of the double serially concatenated block code equivalent to

the DSCCC in the form

‘L (3 ($)($)A~hw~~~~=
ll=d; Ia+,m n

‘=’nm=’n’=’TmTA;’’’’n02r’’2’nm”ni’”ni ‘ “4)

where tf~ is the free distance of the outer code, and 12,mis the minimum weight of the sequences

of the middle code due to sequences of the outer code with weight ~~, Iz,m Z ~. BY free

distance di, we mean the minimum Hamming weight of error events for convolutional CCS, and

the minimum Hamming weight of codewords for block CCS.

We are interested in large interleaver lengths, and thus use for the binomial coefficient the

asymptotic approximation
N()

N“~—.
n ~!

Substitution of this approximation into (14) yields

Finally, substituting (15) into (10), yields the bit error probability bound in the form

N2/Rj

Pb(e) ~ ~ A(h, N)e-hR’EbiNO
h=hm

where the coefficients A(h, N ) have been defined as

(16)

(17)

having used the result (15) for the A~~h.

S[n the f~uowing, SUpXSd@3 “0”‘“m“ and “i” will refer to quantities pertaining to outer, middle and inner

code, respectively.



BENEDETTO ET ALII: ANALYSIS, DESIGN AND [Ttil{/\TIvE DECODING OF DSCCT 13

Using expressions ( 16) and ( 17) as the starting point, we will obtain some important design

considerations.

The bound ( 16) to the bit error probability is obtained by adding terms of the summation

with respect to the DSCCC weights h. From (17), the coefficients A(h, N) of the exponential

in h depend, among other parameter, on N. For large N, and for a given h, the dominant

coefficient of the exponential in h is the one for which the exponent of N is maximum. Define

this maximum exponent as

a(h) ~ m:,~{no + nm + ni - /l(w) – 12(w) – 1} . (18)

Evaluating cY(h) in general is not possible without specifying the CCS. Thus, we will consider

two important cases, for which general expressions can be found.

A. The ezponent of N for the minimum weight

For large values of ~b/NO, the performance of the DSCC are dominated by the first term of the

summation in h, corresponding to the minimum value h = h~. Remembering that, by definition,

n~, nfi and n~ are the maximum number of concatenated error events in codewords of the

inner, middle, and outer code of weights hm, /2 and /1, respectively, the following inequalities

hold true:

Hnif< -$ ,

4PJ”kJ

[J11(12(h~))
n~ ~

d; ‘

(19)

? (20)

(21)

and

‘(h:)<~~{l*J+lwJ+rl(f~;m))j-’1(’2(hm))-’2(h
=1:1+1’2’~;m)J+lfl’m(f:?hm– 11,~(12,~(hm)) – /2,~(h~) – 1, (22)

where 12,m(hm ) is the minimum weight 12 of codewords of the middle code yielding a codeword of

weight hm of the inner code, f1,m(12,m(hm )) is the minimum weight /1 of codewords of the outer

code yielding a codeword of weight 12,m(hm ) of the inner code and [zj means “integer part of

z“ .

In most casess, /l,m(12,~(h~)) < 2d~, 12,~(h~) < MT, and Am < 2tfj, so that nil = nl’1 = n%, =

8Thi$~ili be Men in the ~XamPle~that follow. and corresponds to the most favorable situation.



JSAC SPECI,\L [SS(JE ON I’URBOCODES14

1, so that (22) becomes

a(h*) = 2- ll,*(f~,*(h*)) – l~,m(hm) <2 – (fj – d? . (23)

The result (23) shows that the exponent of N corresponding to the minimum-weight of DSCCC

codewords is always less than -2 for d; z 2 and d~ z 2, thus yielding an interleaver gain at

high ~b/NO. Substitution of the exponent a(h~ ) into (16) truncated to the first term of the

summation in h yields

~m ~b(e) ~ &N z-d~-d? exp(-h~R.Eb/NO)
*..

where the constant Bm is

(24)

‘~2,m(~m),~mt
~A~,m(,,,m(~m1),,,,m(hm1,1[f~,m(fz,m(hm))]![~~,m(hm)]!

Bm =
k

(25)

~ ‘Afi,(,,m(l,,m(hm)),lJ
WE Wm

and Wm is the set of input weights w that generate

ll,J&(hm)).

Expression (24) suggests the following conclusions:

codewords of the outer code with weight

c For the values of Eb/No and N where the DSCCC performance is dominated by its free

distance ~s = hm, increasing the interleaver length yields a gain in performance,

s To increase the interleaver gain, one should choose an outer code, and a middle code with

large d;, and d?, respectively.

● To improve the performance with Eb/No, one should choose an inner, middle ancl outer code

combination such that h~ is large.

These conclusions do not depend on the structure of the CCS, and thus they yield for both

recursive and non recursive encoder.

The curves of Fig. 3 showing the performance of the various DSCBCS of Example 2 with

increasing interleaver length, however, also show a different phenomenon: for a given &/NO,

there seems to be a minimum value of N that forces the bound to diverge. In other words, there

seem to be coefficients of the exponents in h, for h > hm, that increase with N.

To investigate this phenomenon, we will evaluate the largest exponent of N, defined as

Ll,\f = max{n~l – f~(w)+ n~l - /~(/l(w))+ n;, - 1} . (26)
W,l, ,Ij
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.
B. The maximum exponent of IV

For any w, (l(w), Iz(ll(w), the following inequality holds

‘Lsr2(T)J

1s

(27)

so that

7tfi - /l(w)+ 71fi - f2(f1(w))+ 7J~-1 S nh - ~1(~)+ ntf “’(’l(W))+RH “ ’28)
and the following upper bound to ~M in (26) holds:

{
O&f < IIlax ?Z&– /1(~) + nfi – /2(/1(~))+

W,ll,12 l“(%))J-1}-
Since now

Z2(Z1(W)) Z nfi~

we can write the inequality

(29)

(30)

Starting from (30), we will evaluate the upper bound to @&ffor all possible configurations.

B.1 Block encoders, and nonrecursive convolutional inner and middle encoders

For non recursive inner and middle encoders, we have nfi = II and u.& = 1. In fact, every

input sequence with weight one generates a finite-weight error event, so that an input sequence

with weight f will generate, at most, f error events corresponding to the concatenate ion of 1 error

events of input weight one. Since the uniform interleavers generate all possible permutation of

their input sequences, this event will certainly occur. Substituting these values into (3o) we

obtain

~&f = nfil –l~o, (31)

and interleaving gain is not allowed. This conclusion holds true for both DSCCC employing

nonrecursive inner, and middle encoders and for all DSCBCS, since block codes have codewords

corresponding to input words with weight equal to one.

For those DSCCS we always have, for some h, coefficients of the exponential in h of ( 16) that

increase with N, and this explains the divergence of the bound arising, for each Eb/lVO, when

the coefficients increasing with N become dominant.
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B.2 Nonrecursive inner, recursive middle encoders

Since the inner encoder is nonrecursive, we have WA = 1, so that (30) becomes

For any w, /l(w), owing to the recursiveness of the middle code, the following inequality holds:

so that

@J%Y{n~- I“(wJ+’J-’}

Finally, since for any w, /1(w) we can write 11(w) z nfidj, we obtain

(32)

For d; even, the weight h(o~) associated to the highest exponent of AI’, is given by

where d; is weight of sequences of the inner code generated by input sequences of weight. In

fact, h(a~) is the weight of an inner code sequence formed by 12error events, each generated by

a weight 1 input sequence. On the other hand, 12 is the weight of a middle code sequence that

concatenates d~/2 error events with weight d&ff

For d? odd, the value of h(a~) is given by

(33)

where d?J’ is the minimum weight of the sequences of the middle code generated by a weight 3

input sequence. In this case, in fact, we have

d’j-l
n~=—

2

concatenated error events, of which nfi - 1 generated by weight 2 input sequences and one

generated by a weight 3 input sequence. Note that the interleaving gain in this case is similar

to the one obtainable with SCCCS in [7]; in the case of DSCCCS. however, h(a,v~) can be made

larger.
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B.3 Recursive inner encoder

When the inner encoder is recursive, we obtain a value for crkf that holds for both recursive

and nonrecursive middle encoders.

We start replacing w~ = 2 into (30), since the inner encoder is recursive, obtaining

{
~M < :~ %f–h(w)+%(l-q)+

For any w, /1, the following inequdlty holds

“-~+H1-YH
I J}dy’+1

~-l~(w)- y .

Moreover, taking into account that, for any w, ll(w), we can write

equation (34) becomes

~&f ~ ma.x
‘OM

(34)

(35)

It is interesting to note that when d; = 1 (35) simplifies to the same result obtained for the serial

concatenation of two codes (SCCC) in [7].

The weight h(@&f) associated to the highest exponent of N, satisfies the following inequality

for ~ even, and

h(czM) ~

be drawn from (31),(32) and (35):

for both middle and inner CCS should be avoided, as

for d? odd.

The following design considerations can

● The choice of a non recursive encoder

it leads (see (31)) to at least one coefficient of the exponential in h that increases with N,

thus preventing from the possibility of obtaining an interleave gain for large N.

b Since at least one between middle and inner encoders must be recursive, we can have three

different cases, which all guarantee a certain interleaver gain. The worst is the one in which
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the middle encoder is recursive and the inner is non recursive. In this case, in fact, the value

of a,}l given by (32) is the highest. The best choice is to have recursive the inner encoder,

no matter how the middle is. In this case, in fact, the value of ct,~l is given by (3.5), which

yield the lowest exponent of N, and thus the largest interleaver gain.

V. COMPARISON BETWEEN SIMPLE AND DOUBLE SERIALLY CONCATENATED CODES

To confirm the design rules obtained asymptotically, i.e. for large signal-to-noise ratio and

large interleaver lengths N, we analyze block and convolutional DSCCS, with different interleaver

lengths, and compare their performance with those predicted by the design guidelines. Moreover,

we compare the analytical upper bounds to the bit error probability for block and convolutional

SCCS and DSCCS having the same code rate.

A. Serially concatenated block codes

Consider first the DSCBC of Example 2. The predicted value of cr(h~) is given by (23). In

our case, the minimum distance of the outer code is 2 and that of the middle code 3. As a

consequence, a(h~ ) < –3. Looking at the upper bounds to the bit error probability shown in

Fig. 3, it is easily verified that the interleaver gain, for a fixed and sufficiently large signal-t~noise

ratio, goes as N ‘3, as predicted.

To compare simple and double serial block code concatenations, we have constructed two rate

3/15 codes. The first is the DSCBC of Example 2, and the second is an SCBC obtained by

concatenating the (7,3) code whose 8 codewords are the even-weight codewords of the (7,4)

Hamming code with the (15,7) BCH code. The interleavers for the two concatenated codes have

been chosen so as to yield the same latency, expressed with the parameter q in terms of number

of input words. The curves of the bit error probability bounds reported in Fig. 6 show the

superior performance of the DSCBC for low-medium signal-to-noise ratios. In fact, for q = 1 the

performance are the same, whereas for larger values of q the DSCBC behaves better, owing to

the larger interleaving gain (at Pb(e) = 10-6 the gain is 2 dB for q = 1000). For sufficiently large

Eb/NO, the curves corresponding to the same value of q merge, owing to the fact that the two

codes have the same minimum distance.

B. Serially concatenated convolutional codes

We consider several rate 1/4 DSCCCS formed by an outer 4-state convolutional code with rate

1/2, a middle 4-state convolutional code with rate 2/3 and an inner 4-state convolutional code

with rate 3/4, joined by two uniform interleavers of length N1 = 2N, and N2 = SN.

The main parameters of the employed CCS are described in Table 1. In building the DSCCCS,

we keep as outer encoder a non recursive encoder, whereas for the middle and inner encoders we

use three different combinations. For the first code, DSCCC1, the middle and the inner encoders
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Fig. 6. Comparison between analytical upper bounds to the bit error probability for the DSCBC of
Example 2 and for an SCBC obtained by concatenating a (7,3) code with the (15,7) BCH code.

The parameter q represents, for both DSCBC and SCBC, the code latency expressed in terms of the

number of input words

are both non recursive; for the second code, DSCCC2, the middle is a recursive encoder and the

inner is non recursive; finally, for the third code, DSCCC3, both middle and inner are recursive

encoders.. In Table II the main design parameters of the three DSCCCS are reported.

To check the accuracy of the bounds on a(h~ ) and cZ&f,we have evaluated the coefficients

A(h, N) defined in (17) for two large values of N, N1 = 10,000 and Nz = 20,000. Then, we have

computed the coefficients B(h) defined through

~(h) ~ log [##]
(36)

log [~]

If the asymptotic (for large N) analysis of Section IV is true, then the coefficients B(h), based

on their definition (36) and on the definition (17) of A(h, N), should provide a good estimate of

the exponent o(h) of N defined in ( 18). To check this, we have reported the coefficients B(h)

versus h in Fig. 7 for the three codes DSCCC1, DSCCC2 and DSCCC3.
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Encoder description G’(D) d* df,efl 4

Rate 1/2 NR 1+ D+D2 1+D2 567

Rate 2/3 NR
‘[

l+D D 1 1’434
l+D 1 l+D

110‘*Z ..43Rate 2/3 R
o 1 ,*Z

Rate 3/4 NR

[! 1+**:]D 10 433

1 1 11

100 %5

Rate 3/4 R O1OJ* -33

001+

TABLE I

CONSTITUENT CONVOLUTIONAL ENCODERS USED FOR CONSTRUCTING DOUBLE SERIALCONCATENATED

CODES.

Code description Ccs h~ a(hm) h(ct~) C2M

(Rate 1/4) 1/2 2/3 3/4

DSCCC1 NR NR NR 4 -8 (-6) - -

DSCCC2 NR R NR 4 -8 (-6) 28 (28) -3 (-3)

DSCCC3 NR R R 5 -8 (-6) 6 (3) -7 (-6)

TABLE 11

THREE DOUBLE SERIALRATE 1/4 CONCATENATED CONVOLUTIONAL CODES. THE NUMBER IN

PARENTHESES ARE THE VALUES OF THE PARAMETERS OBTAINED

Consider first the code DSCCC1 (continuous curve). The

USINGTHE BOUNDS OF SECTION IV.

values of B(h) keep cm increasing

with h, according to the value O&f = co for iV + cm predicted by (31). On the other hand,

the value B(hm) is equal to -8, in agreement with the result (23) which stated cz(hm) S -6.

Passing to code DSCCC2 (dashed curve), we find the same value of l?(hm ), whereas the largest

value maxh B(h) = -3, yielding an interleave gain. The result (32) predicted @&j<-3, which

is in perfect agreement with our finding. Finally, the dotted curve of code DSCCC3 yields

m=h l?(h) = –“1, zdso in agreement with (35) that stated a,~f < -6.

To compare simple and double serial concatenation of convolutional codes, we have constructed
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Fig. 7. The coefficients l?(h) versus h for the three DSCCCS of Table II.

two rate 1/4 DSCCC and SCCC. The DSCCC is simply DSCCC3, whereas the SCCC is obtained

concatenating a 4-state rate 1/2 recursive convolutional encoder with a 4-state rate 2/4 recursive

convolutional encoder. The interleaver lengths are chosen so as to yield the same latency for the

two schemes. The results in terms of bit error probability are reported in Fig. 8, and show also

in this case the clear superiority of the DSCCC.

VI. ITERATIVE DECODING OF DOUBLE SERIALLY CONCATENATED CODES

In Sections 2 and 3, we have shown by examples and analytical findings that DSCCCS can

outperform SCCCS, when decoded using an ML algorithm. In practice, however, ML decoding

of these codes with large N is an almost impossible achievement. Thus, to acquire a practical

significance, this theoretical result needs the support of a decoding algorithm of the same order

of complexity as turbo decoding, yet retaining the performance advantages. In this section, we

present an iterative algorithm, which is an extension of the one introduced in [7] to decode serially

concatenated convolutional codes, with complexity not significantly higher than that needed

to separately decode the three ~cs, which approaches the m~~imum-like~hood performance.
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Fig. 8. Comparison between analytical upper bounds to the bit error probability for the code DSC.!CC3of

Table 11and for an SCCC obtained by concatenating a 4-state outer recursive convolutional encoder

with rate 1/2 and a 4-state inner recursive convolutional encoder with rate 2/4. The parameter N

represents, for both DSCCC and SCCC, the code latency expressed in terms of the number of input

bits

Because of the importance in applications, all examples will refer to DSCCCS, although the

decoding algorithm can be applied to DSCBCS as well.

A. The itemtive decoding algon”thm for DSCC’CS

The core of the new decoding procedure consists of an a-posteriori-probability (APP ) decoding

algorithm (it will be described in next Subsection) applied to the CCS. The functionality of the

APP decoder to be used for DSCCCS are sensibly different from those needed in the PCCC

decoding algorithm, as we will show in the following. To permit a continuous decoding of the

received sequence, we will use a modified version of the slidingwindow APP algorithm described

in [13].

A functional diagram of the iterative decoding algorithm for DSCCCS is presented in Fig. 9,

where we also show a double turbo encoder, using three CCS and two interleaver, and its iterative
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decoder to enlighten analogies as well as differences.

Let us explain how the algorithm works, according to the blocks of Fig. 9. The blocks labeled

“APP” are drawn with two inputs and two outputs. The input labeled O represents the logarithm

of the probability density function (LPDF) of the unconstrained output symbols of the encoder,

while that labeled 1 represents the LPDF of unconstrained input symbols. Similarly, the outputs

represent the same quantities conditioned to the code constraint as they are evaluated by the

APP decoding algorithm. Differently from the iterative decoding algorithm employed for turbo

decoding (also shown in Fig. 9), in which the APP algorithm only computes the LPDF of input

symbols conditioned on the code constraints based on the unconstrained LPDF of input symbols,

the DSCC decoder must fully exploit the potential of the APP algorithm, which can, in fact,

update both LPDF of input and output symbols based on the code constraints. Both outputs of

APP directly generate the “extrinsic” information required for iterative decoding. So there is

no need to subtract the unconstrained input LPDF from the output.

We assume that the pair (i, o) of symbols, labeling each branch of the code trellis, be indepen-

dent at the input of the APP decoder, so that their joint LPDF is given by:

LPDF(i, o) = Jvlll’(i) + LPDF(0) .

During the first iteration of the DSCCC algorithm, the block “APP INNER” is fed with the

demodulator soft output, consisting of the LPDF of symbols received from the channels, i.e.

of output symbols of the inner encoder. The LPDF is processed by the first APP decoder that

computes the LPDF relative to the input symbols conditioned on the inner code constraints. This

information is passed through the second inverse interleaver (block labeled “m;*”). AS the input

symbols of the inner code, after inverse interleaving, correspond to the output symbols of the

middle code, they are sent to the “APP MIDDLE” block in the upper entry, which corresponds

to output symbols. The middle APP decoder, in turn, processes the LPDF of the unconstrained

output symbols and computes the LPDF of both output and input symbols based on the code

constraints. The LPDF of output symbols are fed back to the APP inner decoder in the second

iteration. The LPDF of input symbols, instead, are passed through the first inverse interleaver

(block labeled “r~l” ). Since the input symbols of the middle code, after inverse interleaving,

correspond to the output symbols of the outer code, they are sent to the “APP OUTER block

in the upper entry, which corresponds to output symbols. The LPDF of input symbols will be

used in the final iteration to recover the information bits, whereas the LPDF of output symbols

are interleaved and fed back to the APP middle decoder.
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The

Iterative decoding algorithm for double serially and parallel concatenated convolutional codes.

encoder for the double parallel concatenated code is also shown.
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B. The additive algorithm for bit a-posteriori probability evaluation

As seen in Fig. 9, the main building block of the iterative decoder, for both Dscccs and

DPCCCS, is the one implementing the a-posteriori probability evaluation, denoted by APP. Its

main characteristics have been illustrated in [14]. Here, we will briefly describe the input-output

relationship needed to implement the APP modules in Fig. 9. The description will be based on

the the trellis section shown in Fig 10.

Consider a code with p input bits and g output bits {O,1},Let U&(e) represent U~,i(e); i =

1,2,””” , p the input bits on a tre~s edge at time k and let C~(e) represent C&,i(e); i = 1, 2, o””,q

the output bits on the same trellis edge at time k.

I
I
I
*

I

ss(e)

I
I
I

I I

!
I
I
I e

I
I
1

f( )e

I I
1 I

I 1
,

Fig. 10. Trellis Section.

Define the reliability of a bit Z taking values {O,1} at time k as

~k[z; . . .]~ log ~k[z = 1;”1

f’k[z = O; j

It is in fact the difference of LPDFs for bit values 1, and O. The second argument in the brackets,

denoted by a dot, may represent 1, the input to, or 0, the output from the APP module.

We use the following identity

L
A

a = log[~ea’] = nl~X{Ui} + b(al, . . ..aL) = I’n,W*{Ui}
i=l

where 6(a1, .... aL) is the correction term which can be computed using a look-up table [15], thus
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defining the “max-” operation as a maximization (compare-select ) plus a correction term (lookup

table).

Assuming a binary modulation scheme (e.g. BPSK, or, also, QPSK if we consider QPSK as

two independent parallel BPSK), and normalizing the received samples {y~,i} at the output of

the receiver matched filter in such a way that the additive complex noise samples have unit

variance per dimension, we can write

/

2E.
?/k,i = ~(QCk,i - 1) t nk,; .

The relationships relating the input-output extrinsic reliabilities of information and code bits

are given by the following expressions

~k(ck,j; O) =

- ~$,~; ~{~k-l [$S(e)]+ ~ ~k,i(e)~k[~k,i; ~] + ~Ck,i(e)~k[Ck,i; ~] + @k[SE(e)]} (38)
:,=

i=l i=l

i#j

where the quantities (lk(.) and ~k(.) are obtained through the following forward and backward

recursions:

$k($) = max= {,f?k+l[8E(e)]+ ~uk+l,i(e)~k+l [Uk+l,i; ~]+~ck+l,i(e)~k+ l[ck+l,i; ‘]+hpk (40)
e:ss(e)=s i= 1 i=l

with initial values, cro(s) = O, if s = O (initial zero state) and Oo(s) = -oo, otherwise, and

$n(s) = O, if s = O (final zero state) and ~n(s) = -cm, otherwise. To yield continuous decoding
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employing the sliding window algorithm described in [16], the initial condition

27

for the d recursion

is modified as O.(S) = l/f’Vs , Vs, where N, is the number of states in the trellis.

The ho, and hOk are normalization constants used to prevent form buffer overflows in a hard-

ware implementation of the algorithm.

The APP algorithm has strong similarities with the Viterbi algorithm when used in the for-

ward and backward directions, except for a correction term that is added when compare-select

operations are performed.

When the code to which the APP algorithm refers to is either the inner code in DSCCCS (or

any code in DPCCCS), then ~~[c~,l; 1] = 2@~k,i in (37). For the outer code of DSCCCS (38)

is used in the iterations with .Ak[Uk,i;1] = O. To make the final decisions, the outer code uses

(37), again with A~[Uk,i;1] = O. The middle code uses both (37) and (38) during the iterations.

B.1 Simulation results

We have applied the previously described decoding algorithm to four concatenated codes. All

use random interleaves yielding an input latency of 256 bits and have the same rate equal to

1/4. The first is the DSCCC3 of Table II, the second is the SCCC obtained by concatenating

a 4-state rate 1/2 CC with a 4-state rate 2/4 CC; the third is a PCCC (turbo code) obtained

concatenating two equal 4-state rate 1/2 CCS, and, finally, the last one is a double turbo code,

employing two interleavers and three equal 4-state recursive convolutional codes with generating

matrix

[

1+D2 1G(D)= l, I+ D+DZ -

The simulation results in terms of bit error probability versus ~b/NO are reported in Fig. 11

for 5 and 10 iterations of the decoding algorithms. The curves show a clear behavior; we analyze

it for 10 iterations. For very low signal-to-noise ratios, below 0.5 dB, the performance hierarchy

points to the PCCC as the best, followed by the DPCCC, the SCCC and then DSCCC. Between

0.5 and 1:2 dB, the SCCC is the best, followed by the DPCCC, the PCCC and then the DSCCC.

At 1.2 dB, the DSCCC starts outperforming the PCCC; at 1.4 dB it outperforms the the DPCCC,

and at 1.75 dB it becomes the best code. The PCCC shows the well known phenomenon of “error

floor”, which is more precisely a change of slope, around 10-5; the SCCC and DPCCC also have a

sensible change of slope around 10-6, whereas the DSCCC seems immune from this phenomenon,

and would allow reaching very low bit error probabilities. The advantage is clear, in that very

good performance can be obtained by the DSCCC even with small-medium interleavers, in those

situations where simple and double turbo codes (and also SCCC) exhibit change of slope in their

bit error probability curves.

Sometimes, system constraints require that the bit stream is organized in frames, which are

then either accepted or rejected by the decoder. In those situations, the performance measure is
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Fig. 11. Simulation results for the bit error probability of four rate 1/4 concatenated coding schemes.

The parameter nI is the number of iterations of the decoding algorithms.

the fmme error pmbobility, rather than the bit error probability, i.e. the probability that there

is at least one error in a frame. We have evaluated the frame error probability for the same

four concatenated coding schemes previously examined with respect to the bit error probability,

assuming a frame size of 256.

The simulation results are shown in Fig. 12 for 5 and 10 iterations of the decoding algorithms.

With respect to the frame error rate, the PCCC is the worst of the four. In fact, the crossing

between its performance and that of the DSCCC happens at 0.8 dB, instead of 1.2 dB for the

previous ‘curves, and the SCCC is now uniformly better than the PCCC. As to the DPCCC, it

becomes worse than the DSCCC at 1.5 dB. The same behavior previously described concerns

the frame error floors.

VII. CONCLUSIONS

We have proposed double serially concatenated codes with two interleavers: they consist of the

cascade of an outer encoder, an interleaver permuting the outer codewords bits, a middle encoder,

another interleaver permuting the middle codewords bits and an inner encoder whose input words

are the permuted middle codewords. For these new coding schemes, we have obtained upper

‘This is, to our knowledge, the first time that concatenated codes with interleavers are compared using this

parameter.
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Fig. 12. Simulation results for the frame error probability of four rate 1/4 concatenated schemes. The

parameter nI is the number of iterations of the decoding algorithms.

bounds to the average maximum-likelihood bit error probability, and derived design guidelines for

the outer, middle, and inner encoders that maximize the interleave gain and the asymptotic slope

of the error probability curves. Finally, we have proposed a low-complexity, iterative decoding

algorithm. Both analytical and simulation results, in which the performance of the new scheme

have been compared with parallel concatenated convolutional codes, known as “turbo codes”,

and with the recently proposed serially concatenated convolutional codes, have been presented.

They show that the new scheme offer superior performance when maximum-likelihood decoded.

Moreover, with the suboptimum decoding aIgorithm, the drawback of the error “floor” to the

bit error probability typical of PCCC, and, to a lower extent, of the SCCC, is pushed down to

very low bit error probabilities. Thus, there is no need for very ]arge interleaves to obtain low

bit error probability, as for turbo codes, and, as a consequence, the new scheme can be adopted

when high performance are sought at not too low signal-to-noise ratios with a small decoding

latency.
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